Content maintenance (editing this data set)

вироиш

Automated used in {{Infobox element}} (talk):

  • Hg: {{Варақаи унсури кимиёӣ/symbol-to-oxidation-state|symbol=Hg}} → −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide)
  • Hs: {{Варақаи унсури кимиёӣ/symbol-to-oxidation-state|symbol=Hs}} → (+2), (+3), (+4), (+6), +8[1][2][3] (parenthesized: prediction)

Comment options

вироиш


Oxidation states data sets (WP:ELEMENTS talk)
Z Name Symbol complete main group val note
 
1 ҳидроген H −1, +1 (an amphoteric oxide) −1, +1 1 I
2 ҳелий He 0 0 18 0
3 литий Li +1 (a strongly basic oxide) +1 1 I
4 бериллий Be +1,[4] +2 (an amphoteric oxide) +2 2 II
5 бор B −5, −1, +1, +2, +3[5][6] (a mildly acidic oxide) +3 13 III
6 карбон C −4, −3, −2, −1, 0, +1,[7] +2, +3,[8] +4[9] (a mildly acidic oxide) −4, +4 14 IV
7 натрий N −3, −2, −1, +1, +2, +3, +4, +5 (a strongly acidic oxide) −3, +3, +5 15 V
8 оксиген O −2, −1, 0, +1, +2 −2 16 VI
9 фтор F −1 (oxidizes oxygen) −1 17 VII
10 неон Ne 0 0 18 0
11 натрий Na −1, +1 (a strongly basic oxide) +1 1 I
12 магний Mg +1,[10] +2 (a strongly basic oxide) +2 2 II
13 алюминий Al −2, −1, +1,[11] +2,[12] +3 (an amphoteric oxide) +3 13 III
14 силитсий Si −4, −3, −2, −1, +1,[13] +2, +3, +4 (an amphoteric oxide) −4, +4 14 IV
15 фосфор P −3, −2, −1, +1,[14] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
16 сулфур S −2, −1, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
17 хлор Cl −1, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
18 аргон Ar 0 0 18 0
19 калий K −1, +1 (a strongly basic oxide) +1 1 I
20 калсий Ca +1,[15] +2 (a strongly basic oxide) +2 2 II
21 скандий Sc +1,[16] +2,[17] +3 (an amphoteric oxide) +3 3 III
22 титан Ti −2, −1, +1, +2, +3, +4[18] (an amphoteric oxide) +4 4 IV
23 ванадий V −3, −1, 0, +1, +2, +3, +4, +5 (an amphoteric oxide) +5 5 V
24 хром Cr −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +3, +6 6 VI
25 манган Mn −3, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +4, +7 7 VII
26 оҳан Fe −4, −2, −1, 0, +1,[19] +2, +3, +4, +5,[20] +6, +7[21] (an amphoteric oxide) +2, +3, +6 8 VIII
27 кобалт Co −3, −1, 0, +1, +2, +3, +4, +5[22] (an amphoteric oxide) +2, +3 9 VIII
28 никел Ni −2, −1, 0, +1,[23] +2, +3, +4[24] (a mildly basic oxide) +2 10 VIII
29 мис Cu −2, +1, +2, +3, +4 (a mildly basic oxide) +2 11 I
30 руҳ Zn −2, 0, +1, +2 (an amphoteric oxide) +2 12 II
31 галлий Ga −5, −4, −3,[25] −2, −1, +1, +2, +3[26] (an amphoteric oxide) +3 13 III
32 германий Ge −4 −3, −2, −1, 0, +1, +2, +3, +4 (an amphoteric oxide) −4, +2, +4 14 IV
33 арсен As −3, −2, −1, +1,[27] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
34 селен Se −2, −1, +1,[28] +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
35 бром Br −1, +1, +3, +4, +5, +7 (a strongly acidic oxide) −1, +1, +3, +5 17 VII
36 криптон Kr 0, +1, +2 (rarely more than 0; oxide is unknown) 0 18 0
37 рубидий Rb −1, +1 (a strongly basic oxide) +1 1 I
38 стронсий Sr +1,[29] +2 (a strongly basic oxide) +2 2 II
39 иттрий Y 0,[30] +1, +2, +3 (a weakly basic oxide) +3 3 III
40 сирконий Zr −2, +1,[31] +2, +3, +4 (an amphoteric oxide) +4 4 IV
41 ниобий Nb −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
42 молибден Mo −4, −2, −1, 0, +1,[32] +2, +3, +4, +5, +6 (a strongly acidic oxide) +4, +6 6 VI
43 технетсий Tc −3, −1, 0, +1,[33] +2, +3,[33] +4, +5, +6, +7 (a strongly acidic oxide) +4, +7 7 VII
44 рутений Ru −4, −2, 0, +1,[34] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +3, +4 8 VIII
45 родий Rh −3, −1, 0, +1,[35] +2, +3, +4, +5, +6 (an amphoteric oxide) +3 9 VIII
46 палладий Pd 0, +1, +2, +3, +4 (a mildly basic oxide) +2, +4 10 VIII
47 нуқра Ag −2, −1, +1, +2, +3 (an amphoteric oxide) +1 11 I
48 кадмий Cd −2, +1, +2 (a mildly basic oxide) +2 12 II
49 индий In −5, −2, −1, +1, +2, +3[36] (an amphoteric oxide) +3 13 III
50 қалъагӣ Sn −4, −3, −2, −1, +1,[37] +2, +3,[38] +4 (an amphoteric oxide) −4, +2, +4 14 IV
51 сурма Sb −3, −2, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) −3, +3, +5 15 V
52 теллур Te −2, −1, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) −2, +2, +4, +6 16 VI
53 йод I −1, +1, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
54 ксенон Xe 0, +1, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) 0 18 0
55 сезий Cs −1, +1[39] (a strongly basic oxide) +1 1 I
56 барий Ba +1, +2 (a strongly basic oxide) +2 2 II
57 лантан La 0,[30] +1, +2, +3 (a strongly basic oxide) +3 3 III
58 серий Ce +1, +2, +3, +4 (a mildly basic oxide) +3, +4 n/a -
59 празеодим Pr 0,[30] +1,[40] +2, +3, +4, +5 (a mildly basic oxide) +3 n/a -
60 неодим Nd 0,[30] +2, +3, +4 (a mildly basic oxide) +3 n/a -
61 прометий Pm +2, +3 (a mildly basic oxide) +3 n/a -
62 самарий Sm 0,[30] +1, +2, +3 (a mildly basic oxide) +3 n/a -
63 европий Eu +1, +2, +3 (a mildly basic oxide) +2, +3 n/a -
64 гадолиний Gd 0,[30] +1, +2, +3 (a mildly basic oxide) +3 n/a -
65 тербий Tb 0,[30] +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
66 диспрозий Dy 0,[30] +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
67 ҳолмий Ho 0,[30] +1, +2, +3 (a basic oxide) +3 n/a -
68 эрбий Er 0,[30] +1, +2, +3 (a basic oxide) +3 n/a -
69 тулий Tm +2, +3 (a basic oxide) +3 n/a -
70 иттербий Yb +1, +2, +3 (a basic oxide) +3 n/a -
71 лютесий Lu 0,[30] +1, +2, +3 (a weakly basic oxide) +3 n/a -
72 ҳафний Hf −2, +1, +2, +3, +4 (an amphoteric oxide) +4 4 IV
73 тантал Ta −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
74 волфрам W −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) +4, +6 6 VI
75 рений Re −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) +4 7 VII
76 осмий Os −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +4 8 VIII
77 иридий Ir −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[41] +3, +4 9 VIII
78 платина Pt −3, −2, −1, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) +2, +4 10 VIII
79 тилло Au −3, −2, −1, +1, +2, +3, +5 (an amphoteric oxide) +1, +3 11 I
80 симоб Hg −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide) +2 12 II
81 таллий Tl −5,[42] −2, −1, +1, +2, +3 (a mildly basic oxide) +1, +3 13 III
82 сурб Pb −4, −2, −1, +1, +2, +3, +4 (an amphoteric oxide) +2, +4 14 IV
83 висмут Bi −3, −2, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +3 15 V
84 полоний Po −2, +2, +4, +5,[43] +6 (an amphoteric oxide) −2, +2, +4 16 VI
85 астат At −1, +1, +3, +5, +7[44] −1, +1 17 VII
86 радон Rn 0, +2, +6 0 18 0
87 франcий Fr +1 (a strongly basic oxide) +1 1 I
88 радий Ra +2 (expected to have a strongly basic oxide) +2 2 II
89 актиний Ac +2, +3 (a strongly basic oxide) +3 3 III
90 торий Th +1, +2, +3, +4 (a weakly basic oxide) +4 n/a -
91 протактиний Pa +2, +3, +4, +5 (a weakly basic oxide) +5 n/a -
92 уран U +1, +2, +3,[45] +4, +5, +6 (a weakly basic oxide) +6 n/a -
93 нептуний Np +2, +3, +4,[46] +5, +6, +7 (an amphoteric oxide) +5 n/a -
94 плутоний Pu +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +4 n/a -
95 америcий Am +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +3 n/a -
96 кюрий Cm +2, +3, +4, +5,[47] +6[48] (an amphoteric oxide) +3 n/a -
97 берклий Bk +2, +3, +4, +5[47] +3 n/a -
98 калифорний Cf +2, +3, +4, +5[49][47] +3 n/a -
99 эйнштейний Es +2, +3, +4 +3 n/a -
100 фермий Fm +2, +3 +3 n/a -
101 менделевий Md +2, +3 +3 n/a -
102 нобелий No +2, +3 +2 n/a -
103 лоуренсий Lr +3 +3 n/a -
104 резерфордий Rf (+2), (+3), +4[50][51][2] (parenthesized: prediction) (+3), +4 (parenthesized: prediction) 4 IV
105 дубний Db (+3), (+4), +5[51][2] (parenthesized: prediction) +5 5 V
106 сиборгий Sg 0, (+3), (+4), (+5), +6[51][2] (parenthesized: prediction) (+4), +6 (parenthesized: prediction) 6 VI
107 борий Bh (+3), (+4), (+5), +7[51][2] (parenthesized: prediction) (+3), (+4), (+5), +7 (parenthesized: prediction) 7 VII
108 ҳассий Hs (+2), (+3), (+4), (+6), +8[1][2][3] (parenthesized: prediction) (+3), (+4) (parenthesized: prediction) 8 VIII
109 мейтнерий Mt (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[51][52][53][2] (+1), (+3), (+6) (predicted) 9 VIII
110 дармштадтий Ds (0), (+2), (+4), (+6), (+8) (predicted)[51][2] (0), (+2), (+8) (predicted) 10 VIII
111 рентгений Rg (−1), (+1), (+3), (+5), (+7) (predicted)[51][2][54] (+3) (predicted) 11 I
112 коперниcий Cn 0, (+1), +2, (+4) (parenthesized: prediction)[51][55][2] 0, +2 12 II
113 ниҳоний Nh (−1), (+1), (+3), (+5) (predicted)[51][2][56] (+1), (+3) (predicted) 13 III
114 флеровий Fl (0), (+1), (+2), (+4), (+6) (predicted)[51][2][57] (+2) (predicted) 14 IV
115 московиум Mc (+1), (+3) (predicted)[51][2] (+1), (+3) (predicted) 15 V
116 ливерморий Lv (−2),[58] (+2), (+4) (predicted)[51] (+2) (predicted) 16 VI
117 теннесин Ts (−1), (+1), (+3), (+5) (predicted)[2][51] (+1), (+3) (predicted) 17 VII
118 оганессон Og (−1),[51] (0), (+1),[59] (+2),[60] (+4),[60] (+6)[51] (predicted) (+2), (+4) (predicted) 18 0
119 унуненний Uue (+1), (+3) (predicted)[51] (+1) (predicted) 1 I
120 унбинилий Ubn (+1),[61] (+2), (+4) (predicted)[51] (+2) (predicted) 2 II
121 унбиуний Ubu (+1), (+3) (predicted)[51][62] (+3) (predicted) 3 III
122 унбибий Ubb (+4) (predicted)[63] (+4) (predicted) -
123 унбитрий Ubt (+5) (predicted)[63] (+5) (predicted)
124 унбиквадий Ubq (+6) (predicted)[63] (+6) (predicted)
125 унбипентий Ubp (+1), (+6), (+7) (predicted)[63] (+6), (+7) (predicted)
126 унбигексий Ubh (+1), (+2), (+4), (+6), (+8) (predicted)[63] (+4), (+6), (+8) (predicted)

References

вироиш
  1. 1.0 1.1 Haire, 2006, p. 1691.
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 (1975) «Superheavy elements: a prediction of their chemical and physical properties». Recent Impact of Physics on Inorganic Chemistry 21. doi:10.1007/BFb0116498. Санҷида шуд 4 October 2013.
  3. 3.0 3.1 Investigation of group 8 metallocenes @ TASCA. 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Gesellschaft für Schwerionenforschung (2008).
  4. Beryllium: Beryllium(I) Hydride compound data. bernath.uwaterloo.ca. 10 Декабри 2007 санҷида шуд.
  5. (1995) «Infrared Emission Spectroscopy of BF and AIF». J. Molecular Spectroscopy 170 (1). doi:10.1006/jmsp.1995.1058. Bibcode1995JMoSp.170...82Z.
  6. Melanie Schroeder. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden(олмонӣ), стр. 139.
  7. Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical. 6 Декабри 2007 санҷида шуд.
  8. Fourier Transform Spectroscopy of the System of CP. 6 Декабри 2007 санҷида шуд.
  9. Carbon: Binary compounds. 6 Декабри 2007 санҷида шуд.
  10. Bernath, P. F. (1985). «The spectrum of magnesium hydride». Astrophysical Journal 298. doi:10.1086/163620. Bibcode1985ApJ...298..375B.
  11. (1996) «Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions». Angewandte Chemie International Edition 35 (2): 129–149. doi:10.1002/anie.199601291.
  12. D. C. Tyte (1964). «Red (B2Π–A2σ) Band System of Aluminium Monoxide». Nature 202 (4930). doi:10.1038/202383a0. Bibcode1964Natur.202..383T.
  13. Ram, R. S. (1998). «Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD». J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  14. (2006) «Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds». Inorganic Chemistry 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  15. (2010) «Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes». Journal of the American Chemical Society 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  16. Smith, R. E. (1973). «Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 332 (1588): 113–127. doi:10.1098/rspa.1973.0015. Bibcode1973RSPSA.332..113S.
  17. McGuire, Joseph C. (1960). «Preparation and Properties of Scandium Dihydride». Journal of Chemical Physics 33 (5): 1584–1585. doi:10.1063/1.1731452. Bibcode1960JChPh..33.1584M.
  18. Andersson, N. (2003). «Emission spectra of TiH and TiD near 938 nm». J. Chem. Phys. 118 (8). doi:10.1063/1.1539848. Bibcode2003JChPh.118.3543A.
  19. (2003) «Fourier transform emission spectroscopy of the g4Δ-a4Δ system of FeCl». Journal of Molecular Spectroscopy 221 (2). doi:10.1016/S0022-2852(03)00225-X. Bibcode2003JMoSp.221..261R.
  20. Demazeau, G. (1982). «Recent developments in the field of high oxidation states of transition elements in oxides stabilization of Six-coordinated Iron(V)». Zeitschrift für anorganische und allgemeine Chemie 491: 60–66. doi:10.1002/zaac.19824910109.
  21. Lu, J. (2016). «Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−». Physical Chemistry Chemical Physics 18 (45): 31125–31131. doi:10.1039/C6CP06753K. PMID 27812577. Bibcode2016PCCP...1831125L.
  22. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8. 
  23. (2009) «A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps». Angewandte Chemie International Edition 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  24. (2009) «A Stable Tetraalkyl Complex of Nickel(IV)». Angewandte Chemie International Edition 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  25. Ga(−3) has been observed in LaGa, see (2011) «Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen». Z. Naturforsch. 66b: 1107–1121.
  26. Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in немисӣ). PhD Thesis, ETH Zurich. p. 72. ISBN 978-3728125972. doi:10.3929/ethz-a-001859893. 
  27. (2004) «Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters». Inorganic Chemistry 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  28. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  29. (1996) «High-Resolution Infrared Emission Spectrum of Strontium Monofluoride». J. Molecular Spectroscopy 175 (1). doi:10.1006/jmsp.1996.0019. Bibcode1996JMoSp.175..158C.
  30. 30.00 30.01 30.02 30.03 30.04 30.05 30.06 30.07 30.08 30.09 30.10 Yttrium and all lanthanides except Ce, Pm, Eu, Tm, Yb have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). «Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides». Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017.
  31. Zirconium: zirconium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
  32. Molybdenum: molybdenum(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
  33. 33.0 33.1 Technetium: technetium(III) iodide compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
  34. Ruthenium: ruthenium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
  35. Rhodium: rhodium(I) fluoride compound data. OpenMOPAC.net. 10 Декабри 2007 санҷида шуд.
  36. (1996) «Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties». Inorganic Chemistry 35 (9): 2616–22. doi:10.1021/ic951378e.
  37. HSn. NIST Chemistry WebBook. National Institute of Standards and Technology. 23 Январ 2013 санҷида шуд.
  38. SnH3. NIST Chemistry WebBook. National Institure of Standards and Technology. 23 Январ 2013 санҷида шуд.
  39. Dye, J. L. (1979). «Compounds of Alkali Metal Anions». Angewandte Chemie International Edition 18 (8): 587–598. doi:10.1002/anie.197905871.
  40. (2019-12-13) «Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters». Inorganic Chemistry 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
  41. Wang, Guanjun (2014). «Identification of an iridium-containing compound with a formal oxidation state of IX». Nature 514 (7523): 475–477. doi:10.1038/nature13795. PMID 25341786. Bibcode2014Natur.514..475W.
  42. (1996) «Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions». Inorganic Chemistry 35 (11): 3107–12. doi:10.1021/ic960014z.
  43. (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
  44. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8. 
  45. Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464. 
  46. Np(II), (III) and (IV) have been observed, see (2017) «Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding». Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMID 28553487.
  47. 47.0 47.1 47.2 (2018) «Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States». Inorg. Chem. (American Chemical Society) 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
  48. (October 2011) «Formation of volatile curium(VI) trioxide CmO3». Radiochemistry (SP MAIK Nauka/Interperiodica) 53 (5): 453–6. doi:10.1134/S1066362211050018.
  49. Greenwood, Earnshaw, p. 1265.
  50. Rutherfordium. Royal Chemical Society. 21 сентябри 2019 санҷида шуд.
  51. 51.00 51.01 51.02 51.03 51.04 51.05 51.06 51.07 51.08 51.09 51.10 51.11 51.12 51.13 51.14 51.15 51.16 51.17 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5. 
  52. (2004) «Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties». Russian Journal of Coordination Chemistry 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
  53. (2010) «How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX». ChemPhysChem 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  54. (15 June 2019) «Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist». Inorganic Chemistry 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139.
  55. Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. Retrieved 2018-04-21. 
  56. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki. Relativistic Methods for Chemists. Springer. pp. 63–67. ISBN 978-1-4020-9974-8. doi:10.1007/978-1-4020-9975-5_2. 
  57. Schwerdtfeger, Peter (2002). «Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study». Journal of Nuclear and Radiochemical Sciences 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Санҷида шуд 12 September 2014.
  58. (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
  59. (2000) «Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)». Journal of Chemical Physics 112 (6). doi:10.1063/1.480842. Bibcode2000JChPh.112.2684H.
  60. 60.0 60.1 Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18. 
  61. (2010) «Relativistic Effects and the Chemistry of the Heavier Main Group Elements». Relativistic Methods for Chemists. doi:10.1007/978-1-4020-9975-5_2.
  62. (12 September 2016) «4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra». Chemical Physics Letters 662: 169–175. doi:10.1016/j.cplett.2016.09.025. Bibcode2016CPL...662..169A.
  63. 63.0 63.1 63.2 63.3 63.4 (2011) «A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions». Physical Chemistry Chemical Physics 13 (1): 161–8. doi:10.1039/c0cp01575j. PMID 20967377. Bibcode2011PCCP...13..161P.


Oxidation states comment options (WP:ELEMENTS (talk))
|comment= options (as of November 2018):
comment=acidic (an acidic oxide)
comment=mildly acidic (a mildly acidic oxide)
comment=strongly acidic (a strongly acidic oxide)
comment=amphoteric (an amphoteric oxide)
comment=basic (a basic oxide)
comment=weakly basic (a weakly basic oxide)
comment=mildly basic (a mildly basic oxide)
comment=strongly basic (a strongly basic oxide)
comment=strongly basic expected (expected to have a strongly basic oxide) -- Ra
comment=oxidizes oxygen (oxidizes oxygen) -- F
comment=depending (depending on the oxidation state, an acidic, basic, or amphoteric oxide) -- Cr, Mn
comment=rarely non-0, weakly acidic (rarely more than 0; a weakly acidic oxide) -- Xe
comment=rarely non-0, unk oxide (rarely more than 0; oxide is unknown) -- Kr
 
comment=parenthesized (parenthesized: prediction)
comment=predicted (predicted)
comment=<any text> <any text>, including blank
 
WP:ENGVAR (set |engvar= in article page)
By default, element articles (and so infoboxes) are in en-US.
In article space, one can call an infobox with |engvar=en-GB, en-OED, which changes these spellings
comment=parenthesized
|engvar= (parenthesized: prediction)
|engvar=en-US (default) (parenthesized: prediction)
|engvar=en-GB (brackets: prediction)
|engvar=en-OED (brackets: prediction)
|engvar=en-FOO (parenthesized: prediction)


Templates used: